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Abstract

An efficient numerical quadrature is proposed for the approximate calculation of the potential energy in the context of
pseudo potential electronic structure calculations with Daubechies wavelet and scaling function basis sets. Our quadrature
is also applicable in the case of adaptive spatial resolution. Our theoretical error estimates are confirmed by numerical test
calculations of the ground state energy and wavefunction of the harmonic oscillator in one dimension with and without
adaptive resolution. As a byproduct we derive a filter, which, upon application on the scaling function coefficients of a
smooth function, renders the approximate grid values of this function. This also allows for a fast calculation of the charge
density from the wavefunction.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Gaussians and plane waves are at present the most popular basis sets for density functional electronic struc-
ture calculations. Wavelets are a promising new basis set that combines most of the theoretical advantages of
these two basis sets. They can form a systematic orthogonal basis set that allows for adaptivity, the basis func-
tions being localized both in real (compact support) and in Fourier space.

The first attempts to use wavelets in the electronic structure calculations appeared more than 10 years ago.
The first papers we are aware of used the Mexican hat wavelet [1,2] and the Meyer wavelet [3]. However, these
wavelet families were soon abandoned because they do not have compact support. Daubechies [4] wavelets
were then investigated in a series of publications [5–8]. This basis is orthogonal and has the property of having
the highest number of vanishing moments for the given support width, thus, combining locality and
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approximating power. It is also localized in the momentum space. To use the Daubechies wavelets in the var-
iational Galerkin method for the Schroedinger equation, one has to compute the matrix elements of the kinetic
and potential energy operators. The algorithm for the kinetic part is straightforward [9].

The main difficulty is the calculation of the potential energy matrix elements [10–12]. They were computed
by expanding the potential in terms of scaling functions, too, and then a convolution was performed with the
matrix of products of three scaling functions. We will call this ‘‘the triple-product method’’: for details, see the
beginning of Section 4. It requires a lot of computer resources; this motivated alternative approaches. The col-
location approach [13] is not well suited for the Daubechies’ wavelets since it spoils the favorable convergence
rate of variational schemes. Another approach [14] involved designing a quadrature for the product of two
scaling functions and a smooth function. It decreased the amount of computations in comparison to the tri-
ple-product method, but not sufficiently.

It follows from the above considerations that the Daubechies basis set can only be useful for electronic
structure calculations if one has a better algorithm for the calculation of the potential energy than those avail-
able at the moment. Such an algorithm will be proposed in the present paper.

Due to the above listed problems with the Daubechies family, interest focused recently on the interpolating
Deslarier–Dubuc [15] family [16–19]. Because the scaling functions of this family are interpolating (cardinal),
the collocation approximation is much more accurate for them than for the Daubechies family. An even more
accurate approximation for the potential energy is based on a relation with the analytically known overlap
matrix elements [19].

The major disadvantage of the Deslarier–Dubuc wavelets is that they are not orthogonal. For very large
systems, the dominating term in independent particle electronic structure calculations is the orthogonalization
of the one-particle orbitals. The prefactor for this dominating cubic term is much smaller if an orthogonal
basis set is used compared to a non-orthogonal basis set. Orthogonal wavelets are in addition also interesting
candidates for the implementation of linear scaling algorithms [20].

Alpert [21,22] polynomial multiwavelets overcome the above-mentioned disadvantages. The potential
energy can be calculated easily and they are orthogonal. It seems that they are the ideal basis set for all elec-
tron electronic structure calculations and impressive results have been reported [23–25]. The Chui–Lian [26]
family has also been used in the same context [27]. Since multiwavelets can represent discontinuous functions,
they are well suited to represent the electron–nucleus cusp in all electron calculations. However, if one uses the
Bachelet–Hamann–Schulter [28] or Gaussian [29] pseudopotentials, the wavefunctions and the potential are
smooth and this property is not needed. Then one may prefer the Daubechies wavelets due to their simplicity
and small support length. For this reason, we explore in this paper the use of Daubechies wavelets for pseudo-
potential electronic structure calculations, together with our novel quadrature scheme. A topic that is closely
related to the problem of integrating the potential energy is the problem of finding quadrature schemes for the
product of a scaling function(wavelet) and a smooth function [14,30–33].

The quadrature scheme to be presented in this paper is aimed at applications in independent particle
schemes such as density functional theory where one three-dimensional single particle orbital is provided
for each electron in the system. For completeness, we will mention that wavelets have also been explored
as a basis set for high dimensional many-electron wavefunctions [34–36]. Another approach is to use the
so-called Weyl–Heisenberg wavelets that do not have multiresolution properties but are related to the struc-
ture of the phase space [37–40]. Although these two approaches are promising, any treatment of correlation
entails an important increase of the numerical effort and such approaches will not allow to treat systems with
several hundred atoms in the near future.

In the present paper, we apply one-scaling-function quadratures to the numerical calculation of the poten-
tial energy matrix element (1) between two smooth functions. For this purpose, we developed an algorithm for
the reconstruction of grid values of a smooth function from its scaling function expansion coefficients. This
technique might also be used in other contexts such as in speech reconstruction. Our scheme also provides
a way to calculate the density from the wavefunction expressed in scaling functions. The extension of our
potential energy quadrature onto the case of adaptive spatial resolution is then described.

The paper is organized as follows:
In Section 2 we briefly recall the definition and properties of the Daubechies wavelet family.
In Section 3 we recall the quadrature of [14,30] for the product of a scaling function and a smooth function.
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Using that, in Section 4 we construct the quadrature for the potential energy functional, i.e., for the product
of the form
hsmooth function jpotential janother smooth functioni. ð1Þ

In Section 4.1 we derive the quadrature and estimate its error, which behaves essentially as a square of the

error for the wavelet expansion of the smooth functions involved. Then in Sections 4.2 and 4.3 we prove that
the quadrature is exact if the potential and one of the functions in (1) are polynomials and another function is
a scaling function. This confirms the previous estimation of error and extends it to the case when only one of
the functions in (1) is smooth.

In Section 5 we extend our method onto the case of adaptive resolution, repeating the procedure of the pre-
vious section. The errors are again estimated. It is shown that now the main source of error is the boundary
between regions with different resolution.

In Section 6 we modify our adaptive quadrature so that in the regions with constant resolution it reduces to
the non-adaptive one. This reduces the computational burden. The price is that now we need to minimize the
Rayleigh–Ritz (RR) functional in the space of smooth functions, i.e., smoothen the cusp of its gradient at the
boundary between regions with different resolution.

In Section 7 we present a way to compute the density corresponding to a wavefunction expressed in scaling
functions. It uses the approximate wavefunction values derived by the method described in Appendix A. This
way is fast, but it reproduces multipole moments of the density only approximately (although with good
precision).

Finally, in Section 8 we apply our methods to the calculation of the ground state energy and wavefunction of
the harmonic oscillator, both with and without adaptivity. The results are then compared with those obtained
with the RR functional in which the potential energy was calculated exactly. We consider both the least asym-
metric and extremal phase Daubechies wavelets and argue that the least asymmetric family is preferable.

2. The orthogonal wavelets

In this work we use the Daubechies [4] scaling functions /(x) and wavelets w(x), in the dilated and shifted
form:
/k
i ðxÞ � 2k=2/ð2kx� iÞ; wk

i ðxÞ ¼ 2k=2wð2kx� iÞ;
where i and k are integers. Sometimes we will also employ the intermediate notation
/iðxÞ � /ðx� iÞ; /kðxÞ ¼ 2k=2/ð2kxÞ.

Our conclusions are the same for the least asymmetric and extremal phase [4] Daubechies wavelets, but the
least asymmetric ones behave better in the examples we considered. Thus we will use the least asymmetric fam-
ily for the illustration. The graph of the scaling function of this family of the order 8 is given in Fig. 1.

Since the Daubechies scaling functions and vectors are orthogonal, it is natural to use the bra and ket nota-
tion for them. Then, their orthogonality conditions can be written as
h/k
i j/

k
j i ¼ dij; h/k

i jw
k0

j i ¼ 0; k0 > k; hwk
i jw

k0

j i ¼ dijdkk0 .
One can define the following pair of sequences of spaces:
Vk ¼ spanfj/k
i ig; Wk ¼ spanfjwk

i ig; ð2Þ

where Vk \Wk ¼ f0g. It turns out that for any k P 0 the space of square integrable functions L2 can be
decomposed into the following infinite direct sum:
L2 ¼Vk �Wk �Wkþ1 � � � � ð3Þ

In this paper we will need the refinement relations
j/k�1
i i ¼

X
j

hjj/k
2iþji; jwk�1

i i ¼
X

j

gjj/k
2iþji. ð4Þ



Fig. 1. The least asymmetric Daubechies-8 scaling function and the corresponding quadrature filter. As seen from the graph, the filter
values are close to the scaling function values at integer points.
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They are just a unitary transformation to a new basis; for the spaces (2) it means that
Vk ¼Vk�1 �Wk�1. ð5Þ

The inverse of (4) is called the forward wavelet transformation, but we do not need its explicit form in the
present text.

The decomposition (3) can be reformulated in the following way: any square integrable function f(x) can be
uniquely expanded as
f ðxÞ ¼
X

j

ck
j /

k
j ðxÞ þ df ðxÞ; df ðxÞ ¼

X1
q¼k

X
j

dq
j w

q
j ðxÞ. ð6Þ
The Daubechies-2m scaling functions are a basis of degree m � 1. This means that every polynomial of degree
less than m is contained in Vk. Therefore [41], the tail part of the series (6) behaves as
df ðxÞ ¼ OðhmÞ; h ¼ 2�k ð7Þ
with respect to the L2 norm. The O notation corresponds to the limit of k!1. For the polynomials of de-
gree less than m, df(x) = 0.

The methods to be presented can be extended to other wavelet families, not necessarily orthogonal, but in
our opinion, the Daubechies family is the optimal choice for the electronic structure calculations.

3. Quadrature for orthogonal wavelets

A wavelet quadrature is determined by the set of coefficients wl such that for a smooth function G(x),
the integral

R
GðxÞ/k

rðxÞdx is approximated by
ffiffiffi
h
p P

lwlG
k
lþr, where Gk

j � Gð2�kxÞ. The
ffiffiffi
h
p

factor comes from
the normalization of the scaling function. The degree of accuracy of a quadrature formula is M if it yields the
exact result for every polynomial of degree less than or equal to M. This is equivalent to the condition [14]
X

l

xll
s ¼ Ms; Ms �

Z
ys/ðyÞdy; ð8Þ
where Ms are the scaling function moments.



Table 1
The values of the filters wl for the Daubechies-2m least asymmetric filters; m = 3, . . . ,6

l Daubechies-6 Daubechies-8 Daubechies-10 Daubechies-12

�5 0.0000754232174770
�4 0.0003712028220936 �0.0011760498174610
�3 0.0026299127476935 �0.0046529756260417 0.0104347966396891
�2 0.0858797754503928 �0.0377927339236569 0.0306436002784248 �0.0340901829704789
�1 1.0472376804223309 0.0755988357512099 �0.1207447752890374 �0.0067678682684262

0 �0.1886782932535312 0.9999560903030736 0.1338108260452157 1.0005931732054807
1 0.0795781221430145 �0.0794124676160406 0.9123169219278740 0.0041859363010669
2 �0.0288721312776034 0.0451427040622791 0.0109419516584456 0.0351468153360141
3 0.0048548465153963 �0.0069875964135745 0.0393078583967683 �0.0096794739531791
4 0.0008652550890159 �0.0022599250999316 0.0015648660417616
5 0.0002653148861886 �0.0003139771845937
6 0.0000265414526497
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If the quadrature filter is of degree M and G(x) belongs to CMþ1 then [14,30]
Z
GðxÞ/k

r ðxÞdx ¼
ffiffiffi
h
p X

l

wlG
k
lþr þ OðhMþ3=2Þ ¼

ffiffiffi
h
p X

s

ws�rG
k
s þ OðhMþ3=2Þ; h ¼ 2�k. ð9Þ
In this paper we will usually work with the uniform quadrature (of degree M) set forth in [14]
wl ¼
XM

r¼0

P lrMr. ð10Þ
It will be supposed that M = 2m � 1 for the Daubechies-2m wavelets, and l = 1 � m, . . . ,m. In (10), the
Lagrange polynomials of degree M are used
P lðyÞ ¼
Ym

j¼1�m

y � j
l� j

�
X2m�1

r¼0

P lryr; P lr ¼
1

r!

drP lðyÞ
dyr

jy¼0.
The non-zero values of the filters wl for m = 3, . . . ,6 are shown in Table 1.
Fig. 1 also contains the values of wl for m = 4 and M = 7, compared with the graph of the corresponding

scaling function (least asymmetric Daubechies-8). One sees that the filter values are close to the scaling func-
tion values at integer points.

4. The potential energy functional for orthogonal wavelets

An important step in the electronic structure calculation is to find the eigenspectrum of a one-particle Sch-
roedinger equation. Although our approach can be extended to the three-dimensional systems, in this paper
we will consider only one-dimensional ones
ĤWðxÞ ¼ EWðxÞ; Ĥ ¼ � 1

2

o
2

ox2
þ V ðxÞ � T̂ þ Û ;

Z
dxW2ðxÞ ¼ 1. ð11Þ
This equation can be solved by representing a trial wavefunction as a linear combination of finite elements
[42]. In the case considered in this paper, these finite elements are the Daubechies scaling functions (wavelets).
Thus we select the trial function in the form
WIðxÞ ¼
X

i

ck
i /

k
i ðxÞ; ð12Þ
which can also be represented by the ket vector jcki ¼
PN

i¼�N cij/k
i i with N = L/h = 2�kL. In this paper we use

non-periodic boundary conditions, although we could use the periodic ones too. Then if the Rayleigh–Ritz
functional is defined as:
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Rðfck
i gÞ ¼

hckjĤ jcki
hckjcki ¼

T ðfck
i gÞ þ Uðfck

i gÞ
hckjcki ; ð13Þ

T ðfck
i gÞ �hckjT̂ jcki; Uðfck

i gÞ � hckjÛ jcki; ð14Þ
the variational ground state energy and wavefunction expansion coefficients have the form
E0 ¼ min Rðfck
i gÞ; jck

0i ¼ arg min Rðfck
i gÞ. ð15Þ
The other wavefunctions are obtained in the same way using the Lagrange multipliers.
Since the Daubechies-2m scaling functions have degree m � 1 (see Section 2), the ground state energy error

behaves [42] as
dE � E0 � Eex ¼ Oðh2m�2Þ; ð16Þ

where Eex is the exact ground state energy of (11).

The kinetic energy has the form [43]
T ðfck
i gÞ ¼ �

1

2h2

X
i;j

ai�jck
i ck

j ;
where al is the kinetic energy filter.
The potential energy (14) can be written in the conventional form as
U ¼
Z

WIðxÞV ðxÞWIðxÞdx.
For the calculation of the excited states we have to evaluate the more general potential energy bilinear form
U ¼
Z

UIðxÞV ðxÞWIðxÞdx; ð17Þ
where the wavefunction UI(x) has the same form (12)
UIðxÞ ¼
X

i

ck
i /

k
i ðxÞ. ð18Þ
In the electronic structure calculations the exact analytical form of the potential V(x) is not known. Any
approximation of the potential should invoke energy errors that alter the Rayleigh–Ritz functional (13) as lit-
tle as possible; otherwise the minimization with an approximate functional will not converge to the true min-
imum. We choose the following quantitative criterion for this: the error in the potential that arises from
approximation should be small compared to (16). When the grid parameter h is small, there is a convenient
way to ensure that: we require that the approximation error behaves as h2m. Note that, e.g., the collocation
approximation [13] does not fulfill the latter requirement.

The most natural way to approximate the potential is to expand it in the interpolating scaling functions
/kI

i ðxÞ [15,43] of degree 2m
V ðxÞ ¼
X

i

V k
i /

kI
i ðxÞ þ dV ðxÞ; dV ðxÞ ¼ Oðh2mÞ; /kI

i ðxÞ � /Iðx=h� iÞ; V k
i � V ðihÞ; h ¼ 2�k; ð19Þ
where the error estimate (19) holds for sufficiently smooth potentials. Substituting the expansions (12), (18),
and (19) into (17), we get:
U ¼
X

ijl

ck
i V k

j sk
l

Z
/k

i ðxÞ/
kI
j ðxÞ/

k
l ðxÞdxþ Oðh2mÞ ¼

X
ijl

ck
i V k

j sk
l I i�j;l�j þ Oðh2mÞ; ð20Þ

Irs �
Z

/rðxÞ/IðxÞ/sðxÞdx; ð21Þ
where (21) is the triple-product matrix mentioned in Section 1. Unfortunately, the formula (20) requires too
many floating point operations (flops) per grid point. In the simplest case when sk

i coincide with ck
i , the leading

term in that number is 3/2N2 in one dimension and 2N4 in three dimensions. N is the dimension of the matrix



318 A.I. Neelov, S. Goedecker / Journal of Computational Physics 217 (2006) 312–339
(21), and eigenvalue decomposition of the matrix (21) is used in the 3D case. For the Daubehies-2m scaling
functions, N = 2m � 2, so the leading term in m of the number of flops per gridpoint is 6m2 in 1 dimension
and 32m4 in 3 dimensions. This is unacceptable for the realistic values of m of the order of 10.

Therefore we need some approximation that would decrease the amount of computations, but still invoke
the error that asymptotically behaves as Oðh2mÞ, at most. Such an approximation will be described in the fol-
lowing section.

4.1. The quadrature for the case of smooth wavefunctions

Let us consider two smooth functions U(x), W(x) together with their approximate wavelet expansion UI(x),
WI(x) (12),(18). The expansion coefficients ck

i and sk
i are obviously given by
ck
i ¼

Z
/k

i ðxÞUðxÞdx; sk
i ¼

Z
/k

i ðxÞWðxÞdx. ð22Þ
Then, according to (6) and (7),
UðxÞ ¼UIðxÞ þ dUðxÞ; WðxÞ ¼ WIðxÞ þ dWðxÞ; ð23Þ
dUðxÞ ¼

X
k0>k

X
i

dk0

i wk0

i ðxÞ ¼ OðhmÞ; dWðxÞ ¼
X
k0>k

X
i

bk0

i wk0

i ðxÞ ¼ OðhmÞ. ð24Þ
From (23) we get
UIðxÞ ¼ UðxÞ � dUðxÞ; WIðxÞ ¼ WðxÞ � dWðxÞ.
Plugging this expression into (17), we can get after some easy calculations:
U ¼ U A þ dU 1 þ dU 2; U A �
Z

UIðxÞV ðxÞWðxÞdx; ð25Þ

dU 1 �
Z

dUðxÞV ðxÞdWðxÞdx; dU 2 � �
Z

UðxÞV ðxÞdWðxÞdx. ð26Þ
In the following section we will prove that
dU 1 þ dU 2 ¼ Oðh2mÞ ð27Þ

from the local properties of scaling functions. In this section we will show for the two error terms separately
that
dU 1 ¼ Oðh2mÞ; dU 2 ¼ Oðh2mÞ. ð28Þ

The first estimate of (28) follows from (24) and the fact that individual wavelet coefficients dk0

i , bk0

i from the tail
parts behave as 2�k0ðmþ1=2Þ [30]. If the potential V(x) is bounded then it follows from the Schwarz inequality:
Z

dUðxÞV ðxÞdWðxÞdx

����
���� 6 max jV j

Z
jdUðxÞjjdWðxÞjdx 6 max jV jkdUkkdWk.
To prove the second part of (28), let us define the function H(x) = U(x)V(x). It can also be interpolated by
scaling functions:
HðxÞ ¼ H IðxÞ þ dHðxÞ; H IðxÞ ¼
X

i

hk
i /

k
i ðxÞ; hk

i ¼
Z

/k
i ðxÞHðxÞdx; dHðxÞ ¼

X
k0>k

X
i

qk0

i wk0

i ðxÞ ¼ OðhmÞ.
Then,
R

HIðxÞdWðxÞdx ¼ 0, and
dU 2 ¼ �
Z

dHðxÞdWðxÞdx ¼ Oðh2mÞ.
We are left with the approximation (25). Substituting (18) into it, we get
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UA ¼
X

i

ck
i

Z
/k

i ðxÞGðxÞdx; ð29Þ
where G(x) ” V(x)W(x). The scalar products in (29) can now be determined by applying the scaling function
quadrature (9)
UA½WI � ¼
X

i

ck
i

ffiffiffi
h
p X

s

ws�iG
k
s þ Oðh2mþ1=2Þ

" #
¼
X

s

psG
k
s þ Oðh2mÞ; ð30Þ
where
Gk
q ¼ GðhqÞ ¼ V ðhqÞWðhqÞ ¼ V k

qW
k
q

are the grid values of the function G(x). As seen from (30), the quantity
pk
s �

ffiffiffi
h
p X

i

ck
i ws�i
plays the role of the quadrature for the whole function UI.
Now we need to find the grid values of the smooth function G(x). We suppose that we know the grid values

V k
q of the smooth potential. Then it remains to reconstruct the grid values Wk

i of the unknown wavefunction
from the known coefficients sk

i .
The easiest way to obtain the grid values would be by using (12)
WðjhÞ � WIðjhÞ ¼
X

i

sk
i /

k
i ðjhÞ. ð31Þ
Since the Daubechies scaling functions are not very regular, the value of a scaling function at a real space grid
point does not very well represent the behavior of the scaling function in a small interval around this grid point.
As a consequence of this and in accordance with (7), the error in (31) behaves likeOðhmÞ, which is much worse than
(27) and we therefore discard this possibility. We will instead introduce some smoothed grid values �Wk

q which bet-
ter represent the average behavior of WI. In Appendix A it will be shown that there exists a filter Wj such that the
smoothed grid values can be obtained by a convolution from the scaling function expansion coefficients
�Wk
q �

1ffiffiffi
h
p

X
t

W q�tsk
t ¼

1ffiffiffi
h
p

X
j

W jsk
q�j ð32Þ
and that the error behaves as
Wk
q ¼ �Wk

q þ Oðh2mÞ.
Substituting everything back into (30),we get
UA ¼
X

s

pk
s V k

s
�Wk

s þ Oðh2mÞ. ð33Þ
Taking together (25), (27) and (33), one gets
U ¼ U f þ Oðh2mÞ; U f �
X

s

pk
s V k

s
�Wk

s ; ð34Þ
where ‘‘f’’ stands for ‘‘filters’’.
As explained in Appendix A, in the case of the Daubechies scaling functions the quadrature filter wl and the

reconstruction filter Wl are identical. Then (34) assumes the following simple form:
U f � h
X

s

�Uk
s V k

s
�Wk

s ;
�Uk

q �
1ffiffiffi
h
p

X
t

wq�tck
t . ð35Þ
This formula can be computed very fast: when ck
i ¼ sk

i , the number of flops per grid point is just 4m + 3. One
can use it in three dimensions too. In that case the quadrature and reconstruction filters are tensor products of
the one-dimensional ones. Thus one only needs three convolutions with filters of length 2m per grid point for
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the calculation of the potential energy, thus 12m + 3 flops. This is clearly better than the 32m4 + � � � result for
the triple-product method.

Formulas (34) and (35) have a global nature; they characterize the approximation error over the whole
domain of the wavefunction. In the following two sections we will choose a local point of view instead,
and prove that Eqs. (34) and (35) hold for unbounded V(x) too.

4.2. The matrix elements of the potential energy in the case of the Daubechies family

If we substitute the wavefunction expansion (12) and (18) into the energy expression (17), we get
U ¼
X

i;j

ck
i sk

j U ij; U ij �
Z

dx/k
i ðxÞV ðxÞ/

k
j ðxÞ. ð36Þ
Similarly, the approximate energy (35) in the case of the Daubechies family has the form
U f ¼
X

i;j

ck
i sk

j U f
ij; U f

ij �
X

l

V k
l wl�iwl�j; ð37Þ
where wl is the quadrature filter for the Daubechies family.
It is enough to consider the matrix elements U0q; U f

0q since others can be obtained by shifting the potential.
Let us assume that V(x) = xt. Then, after going to the variable y = x/h under the integral one obtains
U 0q ¼
Z

/kðxÞxt/k
qðxÞdx ¼ htKqt; Kqt �

Z
dy /ðyÞ/qðyÞyt. ð38Þ
Similarly, one can check that
U f
0q ¼ htK f

qt; K f
qt �

X
l

wl�qwl lt. ð39Þ
Now, if the potential V(x) is a smooth function, one can expand it into a Taylor series around the origin
V ðxÞ ¼
X2m�1

p¼0

V ðpÞð0Þ
p!

xp þ Oðx2mÞ. ð40Þ
Our aim is to use wavelets for the electronic structure calculations with pseudopotentials, and the local part
of the Gaussian pseudopotentials introduced in [29] is smooth (has infinite number of continuous derivatives).
The smoothness of the potential is best exploited if the grid is fine enough. If necessary, one can also increase
the accuracy of our approximation without changing the number of basis functions, by going to the doubly
dense real space grid. This is discussed in more detail in the very end of Section 5.1. The multiscale nature of
wavelets allows one to adapt the grid resolution locally, which will be described in Section 5.

Note however that one needs only the grid values of the potential for the actual calculations (according to
Eq. (35)). The Taylor expansion of the potential (40) is presented here only to analyze the errors.

Plugging the expansion (40) into (36) and taking into account (38), we get
U 0q ¼
X2m�1

p¼0

V ðpÞð0Þ
p!

hpKqp þ Oðh2mÞ. ð41Þ
In the same way, plugging (40) into the right equation of (37) and using (39), one obtains
U f
0q ¼

X2m�1

p¼0

V ðpÞð0Þ
p!

hpK f
qp þ Oðh2mÞ.
It is in the coefficients Kqp that the approximation differs from the exact calculation. Eq. (39) can be considered
as a quadrature approximation of the integral (38).

It would be convenient if the values of Kqp and K f
qp coincided. It would explain the smallness of error in (33),

since in that case, Uij and U f
ij would differ only by Oðh2mÞ. However, for the cases we checked (Daubechies-6 to
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18) the values of K turned out to be different. Thus, the smoothness of the potential alone does not explain the
smallness of error (34). In the following section, we will see that one needs also the smoothness of the wave-
function to explain that.

Note that the strategy used in [14] was to find an approximation of the matrix (36) such that the corre-
sponding Kp

q be exactly equal to (38), i.e., that the approximation is exact for the polynomial potentials. This
is a flexible scheme but it requires more computer resources than ours. The reason is that in the scheme of [14]
one has to apply two-index filters at each point. Therefore we have the same problem as with the triple-prod-
uct formula (20): the number of flops per grid point is �N2 in one dimension and �N4 in three dimensions,
where N is the dimension of the matrix which plays the role of (21).

4.3. The gradient of the potential energy in the case of the Daubechies family

The gradients of the exact and approximate energies (36) and (37) w.r.t. ck
i are
oU
ock

i
¼
X

j

sk
j U ij;

oU f

ock
i
¼
X

j

sk
j U f

ij; ð42Þ
where the matrix elements are discussed in the previous section. In the case of the potential energy functional,
with the coefficients ck

i instead of sk
i in (36) and (37), there should be an additional factor of 2 in (42).

From (34) one could guess that
oU
ock

i
¼ oU f

ock
i
þ Oðh2mþ1=2Þ; ð43Þ
since there are no preferred points in space for the energy expressions (36) and (35), and thus the energy error
should be ‘‘smeared’’ smoothly over the grid points. Later in this section we will see that (43) is indeed
satisfied.

The condition (43) is very important. It means that if we minimize Uf using some numerical method (steep-
est descent, etc.) then the gradients along which we change the wavefunctions will be very close for the exact
and approximated energies, and thus the results of minimization, the two ground state wavefunctions, will also
be close.

On the other hand, Eq. (34) that was derived above only for a bounded V(x), follows from (43). What is
more, it follows from (43) that (34) is satisfied even if we do not require the function U(x) to be smooth.

At first we will prove (43) for the partial case of i = 0, W(x) = xl and V(x) = xt, from which we then will
easily make extension onto the general case. With the above assumptions, acting similarly to the proof of
(100) one can check that
sk
j ¼ hlþ1=2

Xl

u¼0

Cu
l juMl�u; ð44Þ
where Cu
l are the binomial coefficients, and Ms are the scaling function moments (8).

Substituting (38) and (44) into (42), one obtains
oU
ock

0

¼ hlþtþ1=2Alt; Alt �
Xl

u¼0

Cu
l Ml�u

X
j

Kjtju. ð45Þ
Similarly, in the case of the approximate energy,
oU f

ock
0

¼ hlþtþ1=2Af
lt; Af

lt �
Xl

u¼0

Cu
l Ml�u

X
j

K f
jtj

u. ð46Þ
The coefficients (45) and (46) satisfy the following equalities:
Alt ¼Mlþt; l; t < m; Al0 ¼ Ml; l < 2m; ð47Þ
Af

lt ¼Mlþt; t þ m < 2m; ð48Þ
where Ms are the scaling function moments (8). Their analytical proof can be found in Appendix B.
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Since we were unable to find an analytical proof of (47) for the remaining relevant values of indices:
Alt ¼ Mlþt; m < t < 2m; ð49Þ
we checked it numerically with Mathematica for the Daubechies wavelets of the orders from 6 to 18. We
checked both the extremal phase and least asymmetric Daubechies families. The relative error of (49) can
be made arbitrarily small by increasing the precision of wavelet filters. We went down to 10�40.

Thus we see that for the Daubechies wavelets,
Alt ¼ Af
lt ¼ Mlþt;

oU
ock

0

¼ oU f

ock
0

¼ hlþtþ1=2Mlþt; lþ t < 2m ð50Þ
for arbitrary polynomial V(x) and W(x) with the sum of their degrees less than 2m. The second equality follows
from (45) and (46).

In the remaining part of this section we will infer (43) from (50). Let us consider the exact gradient. It is
given by the left formula (42). The matrix element U0j has been calculated in the previous section. Now let
us consider the scaling function expansion coefficient sk

j (22) for a smooth function W(x). Since the latter is
smooth, it can be expanded into the Taylor series at the origin
WðxÞ ¼
X2m�1

p¼0

WðpÞð0Þ
p!

xp þ Oðx2mÞ. ð51Þ
Plugging (51) into (22) and using (44), we get
sk
j ¼

X2m�1

p¼0

WðpÞðihÞ
p!

hpþ1=2
Xp

t¼0

Ct
pqp�tMt þ Oðh2mþ1=2Þ. ð52Þ
Substituting (52) and (41) into (42), we get
oU
ock

0

¼
X2m�1

s¼0

hsþ1=2

s!

Xs

p¼0

Cp
sW
ðpÞð0ÞV ðs�pÞð0ÞAp;s�p þ Oðh2mþ1=2Þ ¼

X2m�1

s¼0

hsþ1=2

s!
GðsÞð0ÞMs þ Oðh2mþ1=2Þ

¼ gk
0 þ Oðh2mþ1=2Þ; ð53Þ
where we have used (50). As before, G(x) ” V(x)W(x), and gk
i �

R
GðxÞ/k

i ðxÞdx. The analog of (53) for an arbi-
trary gradient component oU

ock
i

can be obtained by replacing all the 0 by ih. Then our error estimate for the po-
tential energy of Eq. (27) follows from the formula
U ¼
X

i

ck
i

oU
ock

i
. ð54Þ
For the gradient of the approximate energy one can exactly repeat the above steps, just using K f
jt instead of Kjt

(since one starts from (39) instead of (41)). The result will be identical to (53); thus, (43) is proved.
5. The case of adaptive resolution

In the actual calculations, most of the wavefunction coefficients for wavelets on fine levels are very small.
An advantage of wavelets is that the coefficients smaller than certain threshold can be set to zero [6,7]; this is
called dynamical adaptivity. We will use here the so-called static adaptivity when one constrains the fine wave-
lets to be zero at the some parts of configuration space – e.g., far from the atomic cores. This effectively leads
to grid resolution slowly varying in real space. Since our quadrature approximation involves some extra care
of the boundaries between regions of different grid resolution (see below), it is more suited for the static adap-
tivity where one can make sure that these boundaries have simple form.

The simplest two-level example will be considered below.
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5.1. The energy error for the adaptive approximation

In this section we will extensively use the bra and ket notation for the wavefunctions (12) and (18)
jcki �
X

i

ck
i j/

k
i i; jski �

X
i

sk
i j/

k
i i. ð55Þ
The ket vectors belong to the space Vk (2). It is finite-dimensional after we apply boundary conditions,
whether periodic or non-periodic.

The energy expressions (36) and (37) then can be written as
U ¼ hckjÛ jski; U f ¼ hckjÛ k
f jski. ð56Þ
Note the difference between the exact and approximate operators. Û is the operator of multiplication by V(x)
in a Hilbert space. On the other hand, Û k

f is an operator in the finite-dimensional space Vk, taking into account
the boundary conditions. Its matrix elements are given by (37).

In the present section we will consider two resolution levels simultaneously. In addition to the resolution
level k, considered up to now, we have a more coarse level k � 1 together with the vectors associated with it
jck�1i �
X

i

ck�1
i j/

k�1
i i; jdk�1i �

X
i

dk�1
i jw

k�1
i i. ð57Þ
For some time we will discuss only the vectors corresponding to UI(x); those related to WI(x) satisfy the same
relations with the symbols c,d replaced by s,b where appropriate.

Similarly to (22), the coefficients in (55) and (57) can be expressed in terms of the smooth function U(x):
ck
i ¼

Z
/k

i ðxÞUðxÞdx; ck�1
i ¼

Z
/k�1

i ðxÞUðxÞdx; dk�1
i ¼

Z
wk�1

i ðxÞUðxÞdx.
The bra and ket notation is convenient because in accordance with (5), the forward and backward wavelet
transformations can be written as
jcki ¼ jck�1i þ jdk�1i. ð58Þ

The left and right parts of the above equality differ only in the choice of basis functions: f/k

i g at the left and
f/k�1

i ;wk�1
i g at the right.

The adaptive approximation consists of replacing the second relation in (57) by
j~dk�1i �
X
i2D

dk�1
i jw

k�1
i i. ð59Þ
In this paper we consider the so-called static adaptivity, where one chooses some fixed predetermined region
D of space such that outside D the wavelet coefficients dk

i are known to be small and can therefore be
neglected. We will call D the fine region.

Replacing |dk�1æ in (58) by (59), one can form the adaptive vector
j~cki � jck�1i þ j~dk�1i. ð60Þ

In other words, if we forward transform |ckæ, then discard the wavelet part outside the domain D according to
Eq. (59) and then backward transform the result, then we get j~cki.

The discarded wavelet part can also be written as a vector
j�dk�1i �
X
i62D

dk�1
i jw

k�1
i i; ð61Þ
so that, taking into account (59),
jdk�1i ¼ j~dk�1i þ j�dk�1i. ð62Þ

The exact energy expression (56) in the adaptive case assumes the form
U a ¼ h~ckjÛ j~ski; ð63Þ
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where Û is the matrix (36), and j~ski is formed from |skæ in the same way as j~cki is from |ckæ (by discarding the
wavelet part outside the same region D). For the approximate energy we make a similar ansatz
U a
f ¼ h~ckjÛ k

f j~ski; ð64Þ

where the matrix elements of Û k

f are given by (37).
Let us estimate the error of the energy expression (64), i.e., its difference from (63). It follows from (60) and

(62) that
j~cki ¼ jcki � j�dk�1i ð65Þ

and, similarly, for j~ski:
j~ski ¼ jski � j�bk�1i. ð66Þ

Plugging (65) and (66) into (63) and (64), we get:
U a ¼hckjÛ jski � h�dk�1jÛ jski � hckjÛ j�bk�1i þ h�dk�1jÛ j�bk�1i;
U a

f ¼hckjÛ k
f jski � h�dk�1jÛ k

f jski � hckjÛ k
f j�bk�1i þ h�dk�1jÛ k

f j�bk�1i.
Therefore, the error of the adaptive energy approximation has the form
dU a � U a � U a
f ¼ dU 1 þ dU 2 þ dU 3 þ dU 4; dU 1 ¼ hckjÛ jski � hckjÛ k

f jski;
dU 2 ¼ h�dk�1jÛ k

f jski � h�dk�1jÛ jski; dU 3 ¼ hckjÛ k
f j�bk�1i � hckjÛ j�bk�1i;

dU 4 ¼ h�dk�1jÛ j�bk�1i � h�dk�1jÛ k
f j�bk�1i. ð67Þ
One can show that all four error terms are small
dU a ¼ Oðh2mÞ. ð68Þ

First, dU 1 ¼ Oðh2mÞ because this is the error term in the non-adaptive case. Then, let us consider the term
dU 2 ¼ h�dk�1jðÛ k
f � ÛÞjski.
One can show that it contains the non-adaptive gradients
Û k
f jski ¼ Û k

f

X
j

sk
j j/

k
j i ¼

X
i;j

j/k
i iU f

ijs
k
j ¼

X
i

j/k
i i

oU f

ock
i

and the same for Û jski. Therefore,
ðÛ k
f � ÛÞjski ¼

X
i

j/k
i i

oU f

ock
i
� oU

ock
i

� �
¼ Oðh2mÞ
because of (43). Also, the wavelet coefficients asymptotically behave as
dk�1
i ¼ Oðhmþ1=2Þ; so jdk�1i ¼ OðhmÞ ð69Þ
(see [30]). Therefore, dU 2 ¼ Oðh3mÞ and this term can be neglected. Since the potential energy matrices (36) and
(37) are Hermithean, the same applies to the third term.

Eq. (69) also determines the asymptotic behavior of the fourth term: dU 4 ¼ Oðh2mÞ. The fourth error term is
formed by wavelet coefficients on the k � 1 level, so it is the main source of error. However, it vanishes outside
D. On the other hand, inside D one can use the non-adaptive error estimate (34). Thus, the main contribution
to the energy error comes from the boundary of D where neither of the above arguments applies.

An interesting partial case is when the fine region D is empty. Then, all the wavelets on the finest level k are
discarded, so the wavelet vector (59) is zero. Thus Eq. (60) is simplified to j~cki ¼ jck�1i, which is equivalent to
using just the scaling functions on the level k � 1. However, we still use the quadrature (10) on the level k, and
evaluate the wavefunction on the grid with constant h = 2�k, which is twice denser than the grid on which the
scaling functions are defined. This is useful if we want to determine the potential energy more precisely without
raising the number of the degrees of freedom in the variational minimization.
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5.2. The matrix elements for the adaptive case

If one substitutes (65) and (66) directly into (63), one obtains:
U a ¼ hck�1jÛ jsk�1i þ h~dk�1jÛ jsk�1i þ hck�1jÛ j~bk�1i þ h~dk�1jÛ j~bk�1i; ð70Þ
U a

f ¼ hck�1jÛ k
f jsk�1i þ h~dk�1jÛ k

f jsk�1i þ hck�1jÛ k
f j~bk�1i þ h~dk�1jÛ k

f j~bk�1i ð71Þ
with the elements of the exact matrix having the form:
ucc
ij � h/

k�1
i jÛ j/

k�1
j i ¼

Z
/k�1

i ðxÞV ðxÞ/
k�1
j ðxÞdx; ucd

ij � h/
k�1
i jÛ jw

k�1
j i; udd

ij � hw
k�1
i jÛ jw

k�1
j i.
The approximate matrix elements are a bit more difficult to derive: using the backward transformation and
(37), we get
ucc f
ij � h/

k�1
i jÛ k

f j/
k�1
j i ¼

X
t

V k
t vt�2ivt�2j ¼

X
s

V k
2iþsvsvs�2q; ð72Þ
where q = j � i and a new filter is defined
vs �
X

l

hlws�l. ð73Þ
Suppose that V(x) = xt. Then, we have (38) and an analog of (39)
ucc
0q ¼ ð2hÞtKqt; ucc f

0q ¼ ð2hÞtkf
qt; kf

qt �
X

l

ðs=2Þtvsvs�2q. ð74Þ
For a general potential, we have (41)
ucc
0q ¼

X2m�1

p¼0

V ðpÞð0Þ
p!
ð2hÞpKqp þ Oðh2mÞ. ð75Þ
For other matrix elements the same formula can be used, just with wavelets instead of scaling functions in the
definition (38) of Kqp.

If we use a variant of the Taylor series (40)
V k
s ¼ V ðshÞ ¼

X2m�1

p¼0

V ðpÞð0Þ
p!
ð2hÞpðs=2Þp þ Oðh2mÞ ð76Þ
and combine it with (74), we will obtain an analog of (75)
ucc f
0q ¼

X2m�1

p¼0

V ðpÞð0Þ
p!
ð2hÞpkf

qp þ Oðh2mÞ. ð77Þ
The matrix elements containing wavelets have the same form, the only difference being that the filters gi are
used instead of hi where appropriate.

5.3. The gradient error for the adaptive approximation

The derivatives of (70) and (71) w.r.t. ck�1
i and ~dk�1

i have the form:
oU a

ock�1
i

¼
X

j

ucc
ij sk�1

j þ
X

j

ucd
ij

~bk�1
j ¼ oU

ock�1
i

�
X

j

ucd
ij

�bk�1
j ; ð78Þ

oU a

o~dk�1
i

¼
X

j

udd
ij

~bk�1
j þ

X
j

ucd
ji sk�1

j ¼ oU

o~dk�1
i

�
X

j

udd
ij

�bk�1
j ; ð79Þ
where U ¼ hckjÛ jski is the energy with all wavelets kept, i.e., for the non-adaptive case. As in the non-adaptive
case, the expressions for the gradient of a quadratic form would differ just by a factor of 2.
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For the approximate energy, the gradient expression is similar. The matrix elements for the exact and
approximate energy have the form (75) and (77), respectively. Since the filters Kp

q, kp
q have finite and short

length, the gradient expressions (78) and (79) are nearly local. Therefore, one can consider their features
depending on the region where ck�1

i is located.
In the fine region D (see (59) and the text after it) the �bk�1

i wavelets (61) are zero. Therefore, Eqs. (78) and
(79) reduce to their non-adaptive counterparts. If we apply the backward wavelet transform to them, the result
will be (42). Then it follows from (43) that the difference between the gradients of the exact and approximated
energy will behave like Oðh2mÞ. Also, all the arguments of Section 4.3 apply.

Now there is the region far from D where all the wavelets are discarded. We will also call it ‘‘coarse region’’.
The wavelets (59): ~dk�1

i ; ~bk�1
i are zero there. Thus, in the coarse region (78) assumes the form
oU a

ock�1
i

¼ ucc
ij sk�1

j . ð80Þ
The condition (79) is not applicable in the coarse region, since the ~dk�1
i wavelets are zero there, and the po-

tential energy does not depend on them.
We will prove below that in the coarse region,
oU a

ock�1
i

¼ oU a
f

ock�1
i

þ Oðh2mþ1=2Þ. ð81Þ
In the partial case when D = ; discussed in the end of Section 5.1, the above equation plays the role of (43).
In the general case there is also the border region between the fine and coarse ones. The error estimates (43)

and (81) were derived under the assumptions that either the ~dk
i or �dk

i wavelets are zero, correspondingly. Since
in the border region neither of these assumptions is guaranteed, the estimates (43) and (81) may no longer hold
there (and the numerical tests imply that they do not hold indeed). Thus in the border region, one has just (78)
and (79), with all terms being non-zero. From the right equations of (43) and (81) one can conclude that the
error at the border is bounded by the magnitude of �bk�1

j coefficients which behave according to (69). The other,
non-adaptive-like part of error behaves like Oðh2mÞ, because of (43). Therefore,
oU
ock�1

i

¼ oU f

ock�1
i

þ Oðhmþ1=2Þ; oU

o~dk�1
i

¼ oU f

o~dk�1
i

þ Oðhmþ1=2Þ
in the border region, so it is the main source of error. The small energy error (68) is consistent with the above
because the rapidly oscillating part of the gradient at the boundary region has small smooth component and
gets drastically diminished when multiplied by a smooth function, according to (54).

In the remaining part of this section we will prove (81) in the coarse region. The proof is completely anal-
ogous to that of (43), so we will not go into much detail. First, let V(x) = xt and W(x) = xl. Then, it follows
from (50) that
oU a

ock�1
0

¼ ð2hÞtþlþ1=2Mlþt.
Let us prove that the same is true for U a
f . Substituting the potential energy matrix from (74) and (52) for the

level k � 1 into (80) we obtain the following analog of (46)
oU a
f

ock�1
0

¼ ð2hÞtþlþ1=2af
lt; af

p;u �
Xp

t¼0

Ct
pMt

X
q

kf
quqp�t.
Similarly to (50), one can show that
af
lt ¼ Mlþt;

oU a
f

ock
0

¼ oU a

ock
0

¼ ð2hÞlþtþ1=2Mlþt; lþ t < 2m. ð82Þ
For the values l < m, Eq. (82) can be proved along the lines of Appendix B. Since we were unable to find an
analytical proof of (47) for the remaining values of l, we checked it numerically with Mathematica for the
Daubechies wavelets of the orders from 6 to 18. We checked both the extremal phase and least asymmetric
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families. Same as with (49), the relative error of (82) can be made arbitrarily small by increasing the precision
of wavelet filters. We went down to 10�40.

Combining (82) with the Taylor expansions (76) and (51) for the level k � 1, we get an analog of (53):
oU a
f

ock�1
0

¼
X2m�1

s¼0

ð2hÞsþ1=2

s!

Xs

p¼0

Cp
s W
ðpÞð0ÞV ðs�pÞð0Þaf

p;s�p þ Oðh2mþ1=2Þ

¼
X2m�1

s¼0

ð2hÞsþ1=2

s!
GðsÞð0ÞMs þ Oðh2mþ1=2Þ ¼ gk�1

0 þ Oðh2mþ1=2Þ ¼ oU a

ock�1
0

þ Oðh2mþ1=2Þ. ð83Þ
Eq. (81) is thus proved.

6. Reducing the computational cost in the coarse region

6.1. The adaptive quadrature for the product of a scaling function and a smooth function

The approximation derived above is not numerically efficient in the coarse region. Namely, the approximate
energy matrix elements are defined by (56) there. However, in the non-adaptive approximation for the level
k � 1, they would be given by (72), which requires roughly twice smaller number of calculations because
the filter xl is shorter than vl. The asymptotic behavior of the energy error of these two approximations is
the same: Oðh2mÞ. Therefore, it would be desirable to use (72) in the coarse region.

This situation is analogous to applying the quadrature (10) on the level k to a two-scale function G(x) that
has ‘‘fine region’’ where one should use the quadrature (10) on the level k and ‘‘coarse region’’ where one
should use it on the level k � 1.

Thus we have an adaptive quadrature. Recall that the adaptive approximation considered in the previous
sections consists of setting the wavelet coefficients in the coarse region to zero. In addition to that, the adaptive
quadrature is defined on a coarser grid in the coarse region.

The question is – what quadrature should we use at the boundary of the coarse and fine regions? Our recipe
is to use the fine quadrature, along with backward transformation, with the filter (73)
Z

GðxÞ/k�1
r ðxÞdx ¼

ffiffiffi
h
p X

l

vlG
k
lþ2r þ OðhMþ3=2Þ ¼

ffiffiffi
h
p X

s

vs�2rG
k
s þ OðhMþ3=2Þ
and go to the coarse quadrature only at some distance from the boundary.
An alternative (and maybe more rigorous) recipe [14] is to use a non-uniform quadrature at the boundary.

However,

	 The non-uniform quadrature is difficult to program since the points in space near the boundary should be
dealt with individually.
	 Our error estimates for the potential energy quadrature hold only for the uniform case and it is not trivial to

extend them onto the case of non-uniform quadrature of [14].

6.2. The energy gradient in the coarse region

At present, the approximate energy gradient in the coarse region is given by
oU a

ock�1
i

¼
X

j

ucc f
ij sk�1

j ;
where the matrix elements are given by (72). In general, the gradient is given by (78) and (79).
The energy gradient on the k � 1 level in the non-adaptive scheme is given by Eq. (42) with the matrix ele-

ments (37) (for the level k � 1)



328 A.I. Neelov, S. Goedecker / Journal of Computational Physics 217 (2006) 312–339
oU f

ock�1
i

¼
X

j

sk�1
j U fk�1

ij . ð84Þ
One could define a ‘‘quasigradient’’ vector vk�1
i with the following components:
vk�1
i ¼

oUa
f

ock�1
i
¼
P

j
uccf

ij sk�1
j þ

P
j

ucdf
ij

~bk�1
j ; i 2 D0;

oU f

ock�1
i
¼
P

j
sk�1

j U fk�1
ij ; i 62 D0;

2
664 ð85Þ
where the set D 0 is D plus the points that are no more than a distance a (empirically, a = 3mh is enough) away
from D. The word ‘‘quasigradient’’ means that the vector (85) is assembled from gradients (78) and (84), but is
not necessarily equal to the gradient of any function at all.

We can use now use this vector instead of the gradient in the iterative minimization algorithms.
The quasigradient vector (85) is a good approximation of the adaptive gradient (78). For the points i 2 D 0

their components coincide. For the points i 62 D 0, they coincide if V(x) and W(x) are polynomials with the sum
of their degrees smaller than 2m, because in that case both the quasigradient and the adaptive gradient coin-
cide with the exact gradient (see (50) and (82)).

For the general potentials and wavefunctions, the gradient (78) assumes the form (83). On the other hand,
the quasigradient will have the form (53) for the level k � 1, which is identical to (83). Therefore, the quasi-
gradient components are asymptotically close to those of the adaptive gradient (78) and its approximate
version
oU a
f

ock
i
� vk

i ¼ Oðh2mþ1=2Þ; oU a

ock
i
� vk

i ¼ Oðh2mþ1=2Þ. ð86Þ
Now let us consider the energy. Eq. (64) can be rewritten in the form similar to (54)
U a
f ¼

X
i

ck�1
i

oU f

ock�1
i

þ
X

i

~dk�1
i

oU f

o~dk�1
i

.

One can define a likewise energy expression based on (85)
U a
e ¼

X
i

ck�1
i vk�1

i þ
X

i

~dk�1
i

oU f

o~dk�1
i

; ð87Þ
where ‘‘e’’ stands fort for ‘‘efficient’’. Then it follows from (86) that
U a
e ¼ U a

f þ Oðh2mÞ; U a
e ¼ U a þ Oðh2mÞ.
Thus, the energy expression (87) is also a good approximation of (64) and (63).
Note that the gradient of (87) does not coincide with the quasigradient (85). They are different only at the

boundary of D 0: the former behaves badly there, while the latter is smooth. This means, in particular, that
simply minimizing (87) would result in a wavefunction that is not smooth at the boundary of D 0, but oscillates
there rapidly.

The quasigradient can be seen as a projection of the gradient of (87) onto the space of functions that are
smooth at the boundary of D 0. One can then assume that we minimize the energy (87) in the space of such
functions. This remedies the above problem of singularity at the boundary.

Alternatively, one can consider the quasigradient as an approximation of the gradient (78) and (87) as an
approximation of (64). We have shown above that the error of such approximation is asymptotically small for
smooth wavefunctions and potentials.
7. Charge density and products of functions

In the density functional theory one needs to express the charge density
qðxÞ ¼ WIðxÞð Þ2
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as a linear combination of scaling functions. In the Hartree-Fock method, one uses products of functions of
the form (12)
UIðxÞWIðxÞ ¼
X

i;j

ck
i sk

j/
k
i ðxÞ/

k
j ðxÞ ð88Þ
and it would also be useful to have that product expanded in terms of scaling functions or wavelets, not in
terms of scaling function products
UIðxÞWIðxÞ ¼
X

j

f k
j /k

j ðxÞ þ dF ðxÞ;
where dF(x) is small. In general, one can expand the product in scaling functions of the order different from m

(that for UI(x),WI(x)), or even from some other wavelet family.
The obvious way to obtain the coefficients f k

j is to expand the left part in scaling functions according to (6).
The coefficients can then be obtained by convolution with the matrix of triple products, similarly to (20). How-
ever, then we would have the same problem as with (20): too many flops per grid point, �N2 in one dimension
and �N4 in three dimensions, where N is the dimension of the triple-product matrix.

Fortunately, we can suggest an alternative way to get the density.
7.1. Using the average grid values of U(x) and W(x)

Let us define the following coefficients:
F k
i � �Uk

i
�Wk

i ¼ UðihÞWðihÞ þ Oðh2mÞ;
where the average values are defined in (32).
Then one can approximate the product (88) with the function
F dðxÞ ¼ h
X

F k
i dðx� ihÞ. ð89Þ
One can easily show that this function reproduces the multipole moments of the product (88)
Z
F dðxÞxt dx ¼ h

X
j

UðjhÞWðjhÞjt ¼
Z

UIðxÞxtWIðxÞdxþ Oðh2mÞ ð90Þ
for all integer t P 0. The second equality is a partial case of (34).
What is more, if W(x) is a polynomial of the degree l and l + t < 2m, then (90) is satisfied exactly. This is a

consequence of (50).
However, the function (89) is not smooth, in contrast to the product (88) that it should approximate. To

remedy this, one can go from (89) to
F IðxÞ ¼
X

F k
i /

Ik
i ðxÞ; /Ik

i ðxÞ � /Iðx=h� iÞ;
where /I(y) is the interpolating scaling function of the order L. Its first L moments are the same as those of a
delta function [9,44]. Therefore, FI(x) satisfies (90) too (for t < L).

On the other hand, if L P m, then
F IðxÞ ¼ UðxÞWðxÞ þ OðhLÞ ¼ UIðxÞWIðxÞ þ OðhmÞ;

so the approximated density is close to (88) at any point.

This approximation is much faster than that the triple-product calculation. However, the moment con-
servation (90) is not exact. To make at least the total charge of a single electron equal to one in this scheme,
one has to scale the coefficients F k

i accordingly. One can also make a forward wavelet transformation to the
scaling function coefficients on some coarser level and scale only them; this is enough to get the correct total
charge.
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8. Application to the harmonic oscillator

8.1. The non-adaptive case

In this section we will test the above approximations by finding the ground state of a unit mass and fre-
quency harmonic oscillator in one dimension. We use non-periodic boundary conditions where the wavefunc-
tion was set to zero outside the interval [�16:16]. The variational ground state is obtained from Eq. (15), with
the definitions (13) and (11) and V(x) = x2/2. Since for the oscillator potential, (19) is exact, we can use the
triple-product method (20) without invoking additional errors.

Our approximation for the potential energy has the form (35)
Fig. 2.
approx
U fðfcigÞ ¼ h
X

s

V k
s

�Wk
s

� �2
; �Wk

q ¼
1ffiffiffi
h
p

X
t

W q�tck
t .
Accordingly one can define the approximate RR functional
Rfðfck
i gÞ ¼

T ðfck
i gÞ þ U fðfck

i gÞ
hckjcki ; Ef

0 ¼ min Rfðfck
i gÞ; jck

f i ¼ arg min Rfðfck
i gÞ. ð91Þ
We performed minimization of (13) in the exact and approximate cases for least asymmetric Daubechies-2m

with 3 6 m 6 8. We used the steepest descent method with diagonal preconditioning and gradient feedback.
The results for Daubechies-8 and Daubechies-16 are shown in Figs. 2–5. On the x-axis we have the inverse grid
interval: h�1 = 2k.

In Figs. 2 and 3, on the y-axis we have the deviation of the variational ground state energy E0 (15) from the
exact result (which is 0.5 for the unit oscillator) and the deviation of the approximate ground state energy Ef

0

(91) from 0.5.
Also shown is the difference of the variational and approximate ground state energies (91) and (15)
dEapp � Ef
0 � E0;
which we call the approximation error. The graphs are on a double logarithmic scale, and they have a dis-
tinct linear part. The slope of the linear part is consistent with (16). For the lower orders, the approximation
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error is one or two orders of magnitude smaller than (16). Its slope in the linear region is equal to 2m, sug-
gesting that
dEapp ¼ Oðh2mÞ. ð92Þ
This behavior is similar to (34). However, note that here we compare the energies for different (although close)
quantum states jck

0i and jck
f i defined in Eqs. (15) and (91), while in the Section 3 we computed the exact and

approximate energy for the same state.
The approximation error grows with m faster than the variational error, so that for Daubechies-16 they

become of the same magnitude, and have the same slope 2m � 2.
In Figs. 4 and 5, on the y-axis we have the following quantities:
dck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðck
i 0 � ck

i gÞ
2

r
; dck

app ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðck
i 0 � ck

i fÞ
2

r
. ð93Þ
We will call the first quantity the variational error and the second one the approximation error. The
coefficients
ck
ig � C

Z
expð�x2=2Þ/k

i ðxÞdx
correspond to the scaling function expansion of the exact ground state of the unit oscillator in the space Vk

(2). The factor C is chosen such that
P

iðck
i gÞ

2 ¼ 1.
We could not find the evaluation of the quantities (93) neither in [42] nor in the previous papers describing

the application of wavelets to the Schroedinger equation [6,14]. The quantity of interest in [42] was something
else: the norm of the total difference between the exact ground state of (11) (in this case, a Gaussian) andP

ic
k
i /

k
i ðxÞ:
kp�1=4 expð�x2=2Þ �
X

i

ck
i /

k
i ðxÞk ¼ OðhmÞ. ð94Þ
The above quantity includes the fine wavelet part (7) of the Gaussian that also behaves as OðhmÞ.
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For lower values of m, the slope of the graphs of (93) in the linear region is 2m � 2 and 2m correspondingly.
The approximation error in the linear region is again one or two orders of magnitude smaller than the vari-
ational error. This suggests the asymptotic behavior
dck ¼ Oðh2m�2Þ; dck
app ¼ Oðh2mÞ. ð95Þ
It follows from the first estimate (95) that the wavefunction error (94) is dominated by the fine wavelet part.
The second estimate of (95) means that the minima of the exact and approximate RR functionals are very
close both to each other and to the projection of the exact solution onto the space of the scaling functions
at resolution level k. This explains in part why the energy error (92) behaves similarly to (34).
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For higher values of m the error reaches the machine precision range before the slopes reach their asymp-
totic values. Still, the approximation error decays faster than the variational one, and the slopes differ by 2,
approximately.

For the lower values of m there is no difference between the behavior of the least asymmetric and extremal
phase Daubechies scaling functions. However, for m > 10 the approximation error for the extremal phase
Daubechies approaches the variational error. The convergence of the steepest descent iterations becomes very
bad. For the symmetric family nothing of that happens. Thus for the bigger values of m our method is not
applicable for the extremal phase family. This is the reason why we prefer the least asymmetric family in
general.

In a practical electronic structure calculation the exact minimization is too costly numerically, but one still
needs a criterion of accuracy of our approximation. We can use for that purpose the gradient of the exact RR
functional (13) at the minimum of the approximate one (91).

8.2. The adaptive case

We will impose adaptivity in the following way: the minimum of the RR functional (13) will be sought in
the class of coefficients fck�1

i ; ~dk�1
i g such that the wavelet coefficients are zero outside the interval [�j,j]:

~dk�1
i ¼ 0 for |21�ki| P j. We choose j = 1.5 as an illustration. The resulting energy and wavefunction are:
Fig. 6.
and th
E0 ¼ min Rðfck�1
i ; ~dk�1

i gÞ ¼ min Rðf~ck
i gÞ; j~ck

0i ¼ arg min Rðf~ck
i gÞ;
where the coefficients ~ck
i are the backward transformation of fck�1

i ; ~dk�1
i g.

Their approximate counterparts are
Ef ¼ min Rfðfck�1
i ; ~dk�1

i gÞ ¼ min Rfðf~ck
i gÞ; j~ck

f i ¼ arg min Rfðf~ck
i gÞ;
where in the approximate RR functional the potential energy part is treated according to the Sections 5 and 6.
The graphs of the energy and wavefunction error for the (least asymmetric) Daubechies-8 and Daubechies-

16 are shown in Figs. 6–9. The main differences from the non-adaptive case are:
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	 The slope of the variational wavefunction error is now approximately m + 1/2. The asymptotical slope of
the approximation error exceeds that of the variational error by 2, roughly. Both wavefunction errors are
localized at the boundary.
	 The approximation error both for the energy and wavefunction for small wavelet orders is an order of mag-

nitude smaller than the variational error, now for the bigger values of h too.
	 The behavior of the approximation error is improved for the small k, compared to the non-adaptive

case.



 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 1  10

R
O

R
R

E 
N

OI
T

C
N

U
F 

E
V

A
W

1/h

δck

δck
app

Fig. 9. The wavefunction errors for the least asymmetric Daubechies-16 scaling functions with adaptivity. The slope of the variational
error reaches 9 and that of the approximation error reaches 11. The approximation error is always smaller than the variational one.

A.I. Neelov, S. Goedecker / Journal of Computational Physics 217 (2006) 312–339 335
9. Conclusion

In the present work we propose a quadrature for the evaluation of the potential energy functional when the
wavefunction is a wavelet approximation of some smooth function. We used the Daubechies family but the
results can be extended onto others. With our algorithm, the potential energy can be calculated using only
one-dimensional convolutions and filters, in contrast to the existing methods. The resulting potential energy
differs only insignificantly from the exact value. The algorithm is extended onto the case of varying spatial
resolution (adaptivity). As a numerical test we calculated the ground state energy and wavefunction of the har-
monic oscillator in 1 dimension for the least asymmetric and extremal phase Daubechies wavelets with orders
from 6 to 16. We performed the minimization of the RR functional with the potential energy calculated by our
method and compared the resulting energy and wavefunction with those obtained from the fully variational
minimization. In the case of the least asymmetric Daubechies family the approximate energy and wavefunc-
tion are close to the variational values. However, for the extremal phase family our method is reliable only for
wavelet orders less than 10.

Our method also allows a fast calculation of a charge density for a wavefunction expressed in the wavelet
basis. As a byproduct, we derived a filter for reconstruction of the grid values of a function from its Daube-
chies-2m scaling function expansion. This reconstruction is exact for polynomials up to order 2m and the
length of the filter is just 2m.

The method can readily be generalized to 3 dimensions and it is already being used for three-dimensional
electronic structure calculations in the framework of the BIGDFT project [45] which is a subject of future
publication.
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Appendix A. Reconstruction of grid values of wavefunction

The aim of this section is the reconstruction of the value of a smooth function at the grid points from the
scaling function expansion coefficients. For this purpose we need to find the finite (and shortest possible)
length filters Wl such that
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�Wk
r �

1ffiffiffi
h
p

X
s

W r�sck
s ¼

1ffiffiffi
h
p

X
s

W qck
r�q ¼ WðhrÞ þ Oðh2mÞ; ð96Þ
where ck
i are given by (22) and h = 2�k.

One can start by finding filters that satisfy (96) exactly for W(x) = xl, l < 2m and k = 0
X
s

W r�scs½xl� ¼ rl; ð97Þ
where the coefficients cs[x
l] are a generalization of the moments (8)
cs½xl� �
Z

xl/sðxÞdx.
Eq. (97) means that, though with the usual interpolation (31) using Daubechies-2m scaling functions one
can exactly reproduce polynomials of degree not more than m � 1, the desired filter Wl should allow us to
reproduce polynomials of degrees up to 2m � 1. Thus for such high-order polynomials, (96) would be satisfied
exactly, so the average value �Wk

r would coincide with value Wr(rh) of the polynomial, but not with the value of
the scaling function expansion (31)
WIðrhÞ ¼
X

i

/k
i ðrhÞ

Z
/k

i ðyÞWðyÞdy.
It is enough to prove (97) at the origin only
dl ¼
X

s

W �scs½xl�; ð98Þ
since then it would follow that
X
s

W r�scs½xl� ¼
X

q

W �qcqþr½xl� ¼
X

q

W �qcq½ðxþ rÞl� ¼
X

q

W �q

Xl

u¼0

Cu
l rl�ucq½xu� ¼

Xl

u¼0

Cu
l rl�udu ¼ rl;

ð99Þ

where we changed the indices: q = s � r. To prove (98), we will use the following auxiliary formula:
cs½xl� �
Z

xl/sðxÞdx ¼
Z

xl/ðx� sÞdx ¼
Z
ðy þ sÞl/ðyÞdy ¼

Z Xl

u¼0

Cu
l yl�usu/ðyÞdy ¼

Xl

u¼0

Cu
l suMl�u;

ð100Þ

where Cu

l are the binomial coefficients, and Ms are the scaling function moments (8).
Substituting (100) into the right part of (98), we get
X
s

W �scs½xl� ¼
X

s

W �s

Xl

u¼0

Cu
l suMl�u ¼

Xl

u¼0

Cu
l Ml�ucuð�1Þu ¼ dl; ð101Þ

cu �
X

s

W ssu. ð102Þ
The filter Ws can thus be found by solving the systems of linear equations (101) and (102) for cu and then for
Ws.

Now we are ready to prove (96). It is enough to do it only at the origin
�Wk
0 ¼

1ffiffiffi
h
p

X
s

W �sck
s ¼ Wð0Þ þ Oðh2mÞ. ð103Þ
To prove (103) one should use a version of (98) at the level k
dl ¼
1ffiffiffi
h
p

X
s

W �sck
s ½xl� ð104Þ
that can be proved in the same way as (98) itself.
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Then it remains to expand W(x) in the Taylor series at 0
WðxÞ ¼
X2m�1

p¼0

WðpÞð0Þ
p!

xp þ Oðh2mÞ
and plug it into (103)
1ffiffiffi
h
p

X
s

W �sck
s ½WðxÞ� ¼

1ffiffiffi
h
p

X
s

W �sck
s

X2m�1

p¼0

WðpÞð0Þ
p!

xp þ Oðh2mÞ
" #

¼ 1ffiffiffi
h
p

X
s

W �s

X2m�1

p¼0

WðpÞð0Þ
p!

ck
s ½xp� þ Oðh2mÞ ¼ Wð0Þ þ Oðh2mÞ;
the last equality following from (104). Eq. (103) is thus proved.
Suppose we work with Daubechies-2m scaling functions. Then, Eq. (101) is satisfied if
cu ¼ Mu; u ¼ 0; . . . ; 2m� 1 ð105Þ

because of the equality ((B2) from [14])
Xp

s¼0

Cs
pMp�sMsð�1Þs ¼ MI

p ¼ dp; p ¼ 0; . . . ; 2m� 1; ð106Þ
where MI
p are the moments of the lazy-m scaling function. The last equality is a property of the interpolating

scaling functions [9,44]. Eq. (106) is satisfied both for the extremal phase and least asymmetric Daubechies
wavelets.

The shortest filter with the moments (105) is (10). Thus, (34) reduces to (35). Note however that (106) is
no longer satisfied for p P 2m because the higher moments of an interpolating scaling function are not
zero. Therefore one cannot construct a filter of degree p higher than 2m � 1 that would also satisfy
(101) for the powers of x up to the pth. Thus, one cannot improve (35) so that its error scale as OðhsÞ with
s > 2m.

The reconstruction scheme presented above can be generalized to find the values of W(x) at arbitrary points
and also to find its derivatives of arbitrary order.
Appendix B. The analytical derivation of the Alt, Af
lt coefficients

In this appendix, we will present the proofs of Eqs. (47) and (48).
At first let us prove (47). Suppose, as in Section 4.3, that V(x) = xt and W(x) = xl. Then, combining the left

equalities of (42) and (38), we get, for l < m,
oU
ock

0

¼
X

j

sk
j U 0j ¼

X
j

sk
j

Z
/kðxÞxt/k

j ðxÞdx ¼
Z

/kðxÞxtþl dx ¼ htþlþ1=2Mtþl; ð107Þ
where we used the fact that
P

js
k
j ½xl�/k

j ðxÞ ¼ xl for l < m. From (107) and (45), we thus get the first equality of
(47). On the other hand, if t = 0 then (38) reduces to U0j = dj and thus (42) has the form
oU
ock

0

¼ sk
0½xl� ¼ hlþ1=2Ml; ð108Þ
where the last equality is a partial case of (44). Combining (108) and (45) we get the second equality of (47)
Now let us turn to Eq. (48). Plugging (39)
U f
0q ¼ ht

X
r

rtwrwr�q
into the second equality of (42), we get
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oU f

ock
0

¼
X

j

sk
j U f

0j ¼ ht
X

r

rtwr

X
q

wr�qsk
q½xl� ¼ ht

X
r

rtwr

ffiffiffi
h
p
ðhrÞl ¼ htþlþ1=2

X
r

wrrtþl ¼ htþlþ1=2Mtþl;

ð109Þ

where we have used (99) and (105). Now, Eq. (48) follows from (46) and (109).
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